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Abstract: In communication networks, greater degrees of stability or less vulnerability is required. The vulnera-
bility of communication network measures the resistance of the network to the disruption of operation after the
failure of certain stations or communication links. If the network begins losing communication links or processors,
then there is a loss in its effectiveness. Thus, communication networks must be so designed that they do not easily
get disrupted under external attack and, moreover, these are easily reconstructible if they do get disrupted. These
desirable properties of networks can be measured by various graph parameters like toughness, integrity, scattering
number, tenacity and rupture degree. Power graphs and total graphs constitute a large class of graphs and which are
widely used in systems ranging from large supercomputers to small embedded systems-on-a-chip. In this paper,
we firstly give the exact values for the integrity and toughness of powers of paths. After that, the vulnerability
parameters such as integrity, toughness, rupture degree of total graphs of some special graphs are calculated. Fi-
nally, the relationships between some vulnerability parameters, namely the integrity, toughness, scattering number,
tenacity and rupture degree are established.

Key–Words: Vulnerability, Integrity, Toughness, Scattering number, Tenacity, Rupture degree, Total graph, Power
graph.

1 Introduction

Throughout this paper, a graph G = (V,E) always
means a simple connected graph with vertex set V
and edge set E. For S ⊆ V (G), let ω(G − S) and
m(G − S), respectively, denote the number of com-
ponents and the order of a largest component in G−S.
A set S ⊆ V (G) is a cut set of G, if either G − S is
disconnected or G − S has only one vertex. We shall
use ⌈x⌉ for the smallest integer not smaller than x,
and ⌊x⌋ for the largest integer not larger than x. The
distance dG(u, v) in a simple undirected graph G be-
tween vertices u, v ∈ V (G) is the length of a shortest
path between u and v in G. We use Bondy and Murty
[9] for terminology and notations not defined here.

A communication network is composed of pro-
cessors and communication links. Links cuts, node in-
terruptions, software errors or hardware failures, and
transmission failures at various points can interrupt
service for long periods of time, then there is a loss
in its effectiveness. This event is called as the vulner-
ability of communication networks. In other words,
the vulnerability of communication network measures
the resistance of the network to the disruption of oper-
ation after the failure of certain processors or commu-
nication links. Network designers attach importance

the vulnerability of a network, they want to design net-
work with less vulnerability or more reliability. Thus,
communication networks must be constructed to be as
stable as possible, not only with respect to the initial
disruption, but also with respect to the possible recon-
struction of the network.

The communication network often has as con-
siderable an impact on a network’s performance as
the processors themselves. Performance measures for
communication networks are essential to guide the de-
signers in choosing an appropriate topology.

In order to measure the performance, we are in-
terested in the following performance metrics (there
may be others):

(1) the number of elements that are not function-
ing,

(2) the number of remaining connected sub-
networks,

(3) the size of a largest remaining group within
which mutual communication can still occur.

Since the communication network can be repre-
sented as an undirected and unweighted graph, where
a processor (station) is represented as a node and a
communication link between processors (stations) as
an edge between corresponding nodes, there are many
graph theoretical parameters can be used to describe
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the vulnerability of communication networks.
Most notably, the vertex-connectivity and edge-

connectivity have been frequently used. The diffi-
culty with these parameters is that they do not take
into account what remains after the graph is discon-
nected. Consequently, a number of other parameters
have been introduced that attempt to cope with this
difficulty, including toughness and edge-toughness
in [6, 7, 12, 19, 28], integrity and edge-integrity in
[2, 3, 4, 5, 13, 18, 21], tenacity and edge-tenacity in
[1, 10, 11, 14, 15, 22, 24, 26, 29], scattering number in
[30, 31], and rupture degree in [20, 22, 23, 25]. Unlike
the connectivity measures, each of these parameters
shows not only the difficulty to break down the net-
work but also the damage that has been caused.

For comparing, the following graph parameters
are listed.

The connectivity is a parameter defined based on
Quantity (1). The connectivity of an incomplete graph
G is defined by

κ(G) = min{|S| : S ⊂ V (G), ω(G− S) > 1},

and that of the complete graph Kn is defined as n−1.
Both toughness and scattering number take into

account Quantities (1) and (2). The toughness and
scattering number of an incomplete connected graph
G are defined by

τ(G) = min{ |S|
ω(G− S)

: S ⊂ V (G), ω(G−S) > 1}.

and

s(G) = max{ω(G− S)− |S| : S ⊂ V (G),

ω(G− S) > 1},
respectively. For the complete graph Kn, we have
τ(Kn) =∞.

The integrity is defined based on Quantities (1)
and (3). The integrity of a graph G is defined by

I(G) = min{|S|+m(G− S) : S ⊂ V (G)}.

Both the tenacity and rupture degree take into ac-
count all the three quantities. The tenacity and rup-
ture degree of an incomplete connected graph G are
defined by

T (G) = min{|S|+m(G− S)

ω(G− S)
:

S ⊂ V (G), ω(G− S) > 1},
and

r(G) = max{ω(G− S)− |S| −m(G− S) :

S ⊂ V (G), ω(G− S) > 1},
respectively. And the tenacity and rupture degree of
the complete graph Kn is defined as n and n − 1, re-
spectively.

The corresponding edge analogues of these con-
cepts are defined similarly, see [5,19,28,29,32].

From the above definitions, we can see that the
connectivity of a graph reflects the difficulty in break-
ing down a network into several pieces. This invariant
is often too weak, since it does not take into account
what remains after the corresponding graph is discon-
nected. Unlike the connectivity, each of the other vul-
nerability measures, i.e., toughness, scattering num-
ber, integrity, tenacity and rupture degree, reflects not
only the difficulty in breaking down the network but
also the damage that has been caused.

In [27], Moazzami et al. compared the integrity,
connectivity, binding number, toughness, and tenac-
ity for several classes of graphs. In [11], Choudum
et al. studied the tenacity of complete graph prod-
ucts and grids. In [22], Li et al. discussed the
tenacity and rupture degree for permutation graphs of
complete bipartite graphs. Cheng et al. [10] deter-
mined the maximum tenacity of trees and unicyclic
graphs with given order and show the corresponding
extremal graphs. These results are helpful in con-
structing stable networks with lower costs. Li [24]
gave some results on the tenacity of gear graphs, pow-
ers of paths and the lexicographic product of some
special graphs. Cozzens et al.[15] studied the tenacity
of harary Graphs. In [23], Li et al. discussed the rup-
ture degree of powers graphs of cycles. In [32], Zhang
et al. studied some edge vulnerability parameters of
split graphs. In [7, 13, 20, 26, 30], the authors proved
that computing the vulnerability parameters such as
integrity, scattering number, toughness, tenacity and
rupture degree of a graph is NP-hard in general. So,
it is an interesting problem to determine vulnerability
parameters for some special graphs.

In this paper, we consider the problem of mea-
suring the vulnerability of power and total graphs. In
Section 2, we give some results on the vulnerability
of power graphs. After that, we study the vulnerabil-
ity of total graphs in sections 3. Finally, the relation-
ships between some vulnerability parameters such as
integrity, toughness, scattering number, tenacity and
rupture degree are established in sections 4.

2 Vulnerability of Powers of Graphs

In this section, we consider the problem of computing
the toughness and integrity of powers of paths. At
first we give the concept of the power graph (or k-th
power) Gk of a graph G.
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Definition 1 For an integer k ≥ 1, the power graph
Gk (the k-th power of a graph G) is defined as fol-
lows: V (G) = V (Gk). Two distinct vertices u and
v are adjacent in Gk if and only if the distance be-
tween the vertices u and v in G is at most k, i.e.,
dG(u, v) ≤ k.

The second power of a graph is also called its
square.

Remark 2 We notice that G1 is just G itself. So, we
let k ≥ 2 in the following.

As a useful network, power of cycles and paths
have arouse interests for many network designers.
Barefoot et al. gave the exact values of integrity of
powers of cycles in [2], and determined the connec-
tivity, binding number and toughness of powers of cy-
cles [3]. Vertex-neighbor-integrity of powers of cy-
cles were studied in [16] by Cozzens and Wu. In [27]
Moazzami gave the exact values for the tenacity of
powers of cycles. Zhang and Yang [33] study the bind-
ing number of the Powers of Paths and cycles. In [24]
Li gave the exact values for the tenacity of powers of
paths.

It is easy to see that P k
n
∼= Kn if n ≤ k+1. So, in

the following lemmas, we suppose that 2 ≤ k ≤ n−2.
A vertex cut set S of a graph G is called a τ -set

of G if it satisfies that τ(G) = |S|
ω(G−S) .

Lemma 3 If S is a minimal τ -set for the graph P k
n ,

2 ≤ k ≤ n−2, then S consists of the union of sets of k
consecutive vertices such that there exists at least one
vertex not in S between any two sets of consecutive
vertices in S.

Proof. We assume that the vertices of P k
n are la-

belled by v1, v2, · · · , vn. Let S be a minimal τ -set
of P k

n and j be the smallest integer such that T =
{vj , vj+1, · · · , vj+t−1} is a maximum set of consec-
utive vertices such that T ⊆ S. We distinguish two
cases:

Case 1. If T = S, then S contains just t con-
secutive vertices vj , vj+1, · · · , vj+t−1. Since
T = S ̸= V (P k

n ), and by the structure of P k
n , S

must leave exact two components of P k
n − S, we

have j > 1, j + t − 1 < n, vj−1 /∈ S, vj+t /∈ S,
and vj+t ̸= vj−1. Therefore, {vj+t, vj−1} ∩ S = ∅.
By the structure of P k

n we know that if S leave exact
two components of P k

n − S, S must contain at least
k consecutive vertices. Thus we have t ≥ k. Now
suppose t > k. Delete vj+t−1 from the set S yielding
a new set S1 = S − {vj+t−1}. Since t > k, the edge
vj+t−1vj−1 is not in P k

n − S1. Consider a vertex vp

adjacent to vj+t−1 in P k
n − S1. Then, p ≥ j + t and

p ≤ j + t + k − 2, and so vp is also adjacent to vj+t

in P k
n − S1. Therefore, deleting vj+t−1 from S yields

ω(P k
n − S1) = ω(P k

n − S). So,

|S′ |
ω(P k

n − S′)
=
|S| − 1

ω(P k
n − S)

<
|S|

ω(P k
n − S)

= τ(P k
n ).

which is contrary to our choice of S. Thus, t = k.

Case 2. If T ⊂ S. Since S ̸= V (P k
n ), T ̸= V (P k

n ),
and S must leave at least two components of P k

n − S,
we have j > 1, j+t−1 < n, vj−1 /∈ S, vj+t /∈ S, and
vj+t ̸= vj−1. Therefore, {vj+t, vj−1} ∩ S = ∅. Now
suppose t < k. Choose vj+i such that 1 ≤ i ≤ t, and
delete vj+i from S yielding a new set S

′
= S−{vj+i}

with |S′ | = |S|− 1. By the definition of P k
n (2 ≤ k ≤

n− 2) we know that the edges vj+ivj−1 and vj+ivj+t

are in P k
n − S

′
. Consider a vertex vp adjacent to vj+i

in P k
n − S

′
. If p ≥ t+ j + 1, then p < t+ j + k. So,

vp is also adjacent to vj+t in P k
n − S

′
. If p < j − 1,

then p ≥ j − k and vp is also adjacent to vj−1 in
P k
n −S

′
. Since t < k, then vj−1 and vj+t are adjacent

in P k
n − S

′
. Therefore, we can conclude that deleting

the vertex vj+i from S does not change the number of
components, and so ω(P k

n −S
′
) = ω(P k

n −S). Thus,
we have

|S′ |
ω(P k

n − S′)
=
|S| − 1

ω(P k
n − S)

<
|S|)

ω(P k
n − S)

= τ(P k
n ).

This is contrary to our choice of S. Thus we must
have t ≥ k. Now suppose t > k. Delete vj+t−1

from the set S yielding a new set S1 = S−{vj+t−1}.
Since t > k, the edge vj+t−1vj−1 is not in P k

n − S1.
Consider a vertex vp adjacent to vj+t−1 in P k

n − S1.
Then, p ≥ j + t and p ≤ j + t + k − 2, and so vp is
also adjacent to vj+t in P k

n − S1. Therefore, deleting
vj+t−1 from S yields ω(P k

n − S1) = ω(P k
n − S). So,

|S1|
ω(P k

n − S1)
=
|S| − 1

ω(P k
n − S)

<
|S|

ω(P k
n − S)

= T (P k
n ),

which is again contrary to our choice of S. Thus, t =
k, and so S consists of the union of sets of exactly k
consecutive vertices. ⊓⊔
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Lemma 4 There is a τ -set S for the graph P k
n , such

that all components of P k
n −S have order m(P k

n −S)
or m(P k

n − S)− 1.

Proof. Among all τ -sets of minimum order, con-
sider those sets with maximum number of minimum
order components, and we let s denote the order of
a minimum component. Among these sets, let S
be one with the fewest components of order s in
P k
n . Suppose s ≤ m(P k

n − S) − 2. Note that
all of the components must be sets of consecutive
vertices. Assume that Cp is a smallest component.
Then |V (Cp)| = s, and without loss of generality, let
Cp = {v1, v2, · · · , vs}. Suppose Ce is a largest com-
ponent, and so |V (Ce)| = m(P k

n − S) = m and let
Ce = {vj , vj+1, · · · , vj+m−1}. Let C1, C2, · · · , Ca

be the components with vertices between vs of Ck and
vj of Ce, such that |Ci| = pi for 1 ≤ i ≤ a, and let
Ci = {vi1 , vi2 , · · · , vipi}. Now we construct the ver-
tex set S

′
as

S
′
= S − {vs+1, v1p1+1 , v2p2+1 , · · · , vapa+1}

∪{v11 , v22 , · · · , va1 , vj}.
Therefore,

|S′ | = |S|,

m(P k
n − S

′
) ≤ m(P k

n − S)

and
ω(P k

n − S
′
) = ω(P k

n − S).

So we have

|S′ |
ω(P k

n − S′)
≤ |S|

ω(P k
n − S)

.

Therefore,

τ(P k
n ) =

|S′ |
ω(P k

n − S′)
.

But, P k
n −S

′
has one less components of order s than

P k
n−S, a contradiction. Thus, all components of P k

n−
S have order m(P k

n − S) or m(P k
n − S)− 1. So,

m(P k
n − S) = ⌈n− k(ω − 1)

ω
⌉.

This completes the proof. ⊓⊔
By the above two lemmas we give the exact val-

ues of toughness of the powers of paths.

Theorem 5 Let P k
n be a powers of a path Pn and n =

r(k + 1) + s for 0 ≤ s < k + 1. Then

τ(P k
n ) =

{
∞, if n ≤ k + 1
k
2 , if n > k + 1.

Proof. If n ≤ k + 1, then P k
n = Kn, so, τ(P k

n ) =∞.
If n > k + 1, let S be a minimum τ -set of P k

n . By
Lemmas 3 and 4 we know that

|S| = k(ω − 1)

and

m(P k
n − S) = ⌈n− k(ω − 1)

ω
⌉.

Thus, by the definition of toughness we have

τ(P k
n ) = min{k(ω − 1)

ω
}.

Now we consider the function

f(ω) =
k(ω − 1)

ω
.

It is easy to see that

f
′
(ω) =

k

ω2
> 0,

and so f(ω) is an increasing function and the min-
imum value occurs at the lower boundary. And we
know that 2 ≤ ω ≤ r + 1, so, we have ω = 2. Then,

τ(P k
n ) =

k

2
.

The proof is now completed. ⊓⊔
In the following section, we determine the in-

tegrity of powers of paths.
A vertex cut set S of a graph G is called an I-set

of G if it satisfies that I(G) = |S|+m(G− S).

Lemma 6 If S is a minimal I-set for the graph P k
n ,

2 ≤ k ≤ n−2, then S consists of the union of sets of k
consecutive vertices such that there exists at least one
vertex not in S between any two sets of consecutive
vertices in S.

Proof. We assume that the vertices of P k
n are la-

belled by v1, v2, · · · , vn. Let S be a minimal I-set
of P k

n and j be the smallest integer such that T =
{vj , vj+1, · · · , vj+t−1} is a maximum set of consec-
utive vertices such that T ⊆ S. We distinguish two
cases:

Case 1. If T = S, then S contains just t consec-
utive vertices vj , vj+1, · · · , vj+t−1. Since T = S ̸=
V (P k

n ), and by the structure of P k
n , S must leave exact

two components of P k
n−S, we have j > 1, j+t−1 <

n, vj−1 /∈ S, vj+t /∈ S, and vj+t ̸= vj−1. There-
fore, {vj+t, vj−1}∩S = ∅. By the structure of P k

n we
know that if S leave exact two components of P k

n −S,
S must contain at least k consecutive vertices. Thus
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we have t ≥ k. Now suppose t > k. Delete vj+t−1

from the set S yielding a new set S1 = S−{vj+t−1}.
Since t > k, the edge vj+t−1vj−1 is not in P k

n − S1.
Consider a vertex vp adjacent to vj+t−1 in P k

n − S1.
Then, p ≥ j + t and p ≤ j + t + k − 2, and so vp is
also adjacent to vj+t in P k

n − S1. Therefore, deleting
vj+t−1 from S yields ω(P k

n − S1) = ω(P k
n − S) and

m(P k
n − S1) ≤ m(P k

n − S) + 1. So,

|S1|+m(P k
n − S1)

≤ |S| − 1 +m(P k
n − S) + 1

= |S|+m(P k
n − S)

= I(P k
n ),

which is contrary to our choice of S. Thus, t = k.

Case 2. If T ⊂ S. Since S ̸= V (P k
n ), T ̸= V (P k

n ),
and S must leave at least two components of P k

n − S,
we have j > 1, j+t−1 < n, vj−1 /∈ S, vj+t /∈ S, and
vj+t ̸= vj−1. Therefore, {vj+t, vj−1} ∩ S = ∅. Now
suppose t < k. Choose vj+i such that 1 ≤ i ≤ t, and
delete vj+i from S yielding a new set S

′
= S−{vj+i}

with |S′ | = |S|− 1. By the definition of P k
n (2 ≤ k ≤

n− 2) we know that the edges vj+ivj−1 and vj+ivj+t

are in P k
n − S

′
. Consider a vertex vp adjacent to vj+i

in P k
n − S

′
. If p ≥ t+ j + 1, then p < t+ j + k. So,

vp is also adjacent to vj+t in P k
n − S

′
. If p < j − 1,

then p ≥ j − k and vp is also adjacent to vj−1 in
P k
n −S

′
. Since t < k, then vj−1 and vj+t are adjacent

in P k
n − S

′
. Therefore, we can conclude that deleting

the vertex vj+i from S does not change the number of
components, and so ω(P k

n − S
′
) = ω(P k

n − S) and
m(P k

n − S
′
) ≤ m(P k

n − S) + 1. Thus, we have

|S′ |+m(P k
n − S

′
)

≤ |S| − 1 +m(P k
n − S) + 1

= |S|+m(P k
n − S)

= I(P k
n ).

This is contrary to our choice of S. Thus we must
have t ≥ k. Now suppose t > k. Delete vj+t−1

from the set S yielding a new set S1 = S−{vj+t−1}.
Since t > k, the edge vj+t−1vj−1 is not in P k

n − S1.
Consider a vertex vp adjacent to vj+t−1 in P k

n − S1.
Then, p ≥ j + t and p ≤ j + t + k − 2, and so vp is
also adjacent to vj+t in P k

n − S1. Therefore, deleting
vj+t−1 from S yields ω(P k

n − S1) = ω(P k
n − S) and

m(P k
n − S1)=m(P k

n − S) + 1. So,

|S1|+m(P k
n − S1)

≤ |S| − 1 +m(P k
n − S) + 1

= |S|+m(P k
n − S)

= I(P k
n ),

which is again contrary to our choice of S. Thus, t =
k, and so S consists of the union of sets of exactly k
consecutive vertices. ⊓⊔

Lemma 7 There is an I-set S for the graph P k
n , such

that all components of P k
n −S have order m(P k

n −S)
or m(P k

n − S)− 1.

Proof. Among all I-sets of minimum order, con-
sider those sets with maximum number of minimum
order components, and we let s denote the order of
a minimum component. Among these sets, let S
be one with the fewest components of order s in
P k
n . Suppose s ≤ m(P k

n − S) − 2. Note that all
of the components must be sets of consecutive ver-
tices. Assume that Cp is a smallest component. Then
|V (Cp)| = s, and without loss of generality, let Cp =
{v1, v2, · · · , vs}. Suppose Ce is a largest component,
and so |V (Ce)| = m(P k

n − S) = m and let Ce =
{vj , vj+1, · · · , vj+m−1}. Let C1, C2, · · · , Ca be the
components with vertices between vs of Ck and vj of
Ce, such that |Ci| = pi for 1 ≤ i ≤ a, and let Ci =
{vi1 , vi2 , · · · , vipi}. Now we construct the vertex set
S

′
as S

′
= S − {vs+1, v1p1+1 , v2p2+1 , · · · , vapa+1} ∪

{v11 , v22 , · · · , va1 , vj}. Therefore,

|S′ | = |S|,

m(P k
n − S

′
) ≤ m(P k

n − S)

and
ω(P k

n − S
′
) = ω(P k

n − S).

So we have

|S′ |+m(P k
n − S

′
) ≤ |S|+m(P k

n − S).

Therefore, I(P k
n ) = |S

′ |+m(P k
n −S

′
). But, P k

n −S
′

has one less components of order s than P k
n − S, a

contradiction. Thus, all components of P k
n − S have

order m(P k
n − S) or m(P k

n − S)− 1. So,

m(P k
n − S) = ⌈n− k(ω − 1)

ω
⌉.

The proof is now complete. ⊓⊔
By the above two lemmas we give the exact val-

ues of integrity of the powers of paths.

Theorem 8 Let P k
n be a powers of a path Pn and n =

r(k + 1) + s for 0 ≤ s < k + 1.

I(P k
n ) =



n,

if n ≤ k + 1

min{(ω − 1)k + ⌈n−k(ω−1)
ω ⌉,

(ω − 1)k + ⌈n−k(ω−1)
ω ⌉},

if n > k + 1.

where ω = ⌊
√

n+k
k ⌋, ω = ⌈

√
n+k
k ⌉.
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Proof. If n ≤ k + 1, then P k
n = Kn, so, I(P k

n ) = n.
If n > k + 1, Let S be a minimum I-set of P k

n . By
Lemmas 6 and 7 we know that |S| = k(ω − 1) and
m(P k

n − S) = ⌈n−k(ω−1)
ω ⌉. Thus, from the definition

of integrity we have

I(P k
n ) = min{k(ω − 1) + ⌈n− k(ω − 1)

ω
⌉

|2 ≤ ω ≤ r + 1}.

Now we consider the function

f(ω) = k(ω − 1) + ⌈n− k(ω − 1)

ω
⌉.

It is easy to see that

f
′
(ω) = k + ⌈−n− k

ω2
⌉ = ⌈kω

2 − (n+ k)

ω2
⌉.

Since ω2 > 0, we have f
′
(ω) ≥ 0 if and only if

g(ω) = kω2 − (n+ k) ≥ 0.

Since the two roots of the equation

g(ω) = kω2 − (n+ k) = 0

are

ω1 = −
√

n+ k

k

and

ω2 =

√
n+ k

k
.

But ω1 < 0, and so it is deleted. It is easy to see that
⌊ω2⌋ ≥ 2, and we know that 2 ≤ ω ≤ r + 1, so, we
have the following cases:

Case 1. If 2 ≤ ω ≤ ⌊ω2⌋, we have f
′
(ω) ≤ 0, and so

f(ω) is an decreasing function.

Case 2. If ⌈ω2⌉ ≤ ω ≤ k, then f
′
(ω) ≥ 0, and so

f(ω) is a increasing function.
Thus the minimum value occurs when ω = ⌊ω2⌋

or ω = ⌈ω2⌉. Then,

I(P k
n ) = min{(ω − 1)k + ⌈n− k(ω − 1)

ω
⌉,

(ω − 1)k + ⌈n− k(ω − 1)

ω
⌉},

where ω = ⌊
√

n+k
k ⌋, ω = ⌈

√
n+k
k ⌉.

The proof is now completed. ⊓⊔

3 Vulnerability of Total Graphs of
Paths and Cycles

In this section, firstly we define total graph of a graph,
then we obtain integrity, toughness, tenacity of total
graphs of some basic graphs.

Let G be a graph with vertex set V (G) and edge
set E(G). The concept of total graph T (G) of graph
G was introduced by Behzad [8] in 1966.

Definition 9 The total graph of G, denoted by T (G)
is defined as follows. The vertex set of T (G) is V (G)∪
E(G). Two vertices x, y in the vertex set of T (G) are
adjacent in T (G) in case one of the following holds:
(i) x, y are in V (G) and x is adjacent to y in G. (ii)
x, y are in E(G) and x, y are adjacent in G (iii) x is
in V (G), y is in E(G), and x, y are incident in G.

Definition 10 ([17]) The subdivision graph S(G) of
a graph G is the graph obtained from G by replacing
each of its edge by a path of length 2, or equivalently,
subdividing every edge of G once.

The total graph T (G) of a graph G is a graph such
that the vertex set of T (G) corresponds to the vertices
and edges of G and two vertices are adjacent in T (G)
if and only if their corresponding elements are either
adjacent or incident in G. It is easy to see that T (G)
always contains both G and Line graph L(G) as a in-
duced subgraphs. Total graph is the largest graph that
is formed by the adjacent relations of elements of a
graph. It is is highly recommended for the design of
interconnection networks.

Lemma 11 ([8]) For any graph G, T (G) ∼=
(S(G))2.

In [1], Aytaç, computing the tenacity of total
graph of path and cycles, we will give formulas for
computing exact values of tenacity of total graph of
path and cycles, and our proof is simpler than that in
[1].

Lemma 12 ([27]) Let Ck
n be a powers of a cycle Cn

(n ≥ 2k+1) and n = r(k+1)+s for 0 ≤ s < k+1.
Then

T (Ck
n) = k +

1 + ⌈ sr⌉
r

.

Remark 13 The result in Lemma 12 only holds when
n ≥ 2k+1. If n < 2k+1, Ck

n is Kn, then T (Ck
n) = n.

Theorem 14 Let T (Cn) be the total graph of Cn with
order n (n ≥ 3), then the tenacity of T (Cn) is

T (T (Cn)) = 2 +
1 + ⌈ sr⌉

r

where 2n = 3r + s for 0 ≤ s < 3.
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Proof. By the definition of subdivision graph, we
know that S(Cn) = C2n. From Lemma 11, we have

T (Cn) ∼= C2
2n.

It is obvious that 2n > 5, i.e., C2
2n is not a complete

graph. So, by Lemma 12, we have

T (T (Cn)) = T (C2
2n) = 2 +

1 + ⌈ sr⌉
r

where 2n = 3r + s for 0 ≤ s < 3.
The proof is now complete. ⊓⊔

Lemma 15 ([24]) Let P k
n be a powers of a path Pn

and n = r(k + 1) + s for 0 ≤ s < k + 1. Then

T (P k
n ) =



n,

if n ≤ k + 1
k(r−1)+⌈n−k(r−1)

r
⌉

r ,

if n > k + 1 and s = 0
kr+⌈n−kr

r+1
⌉

r+1 ,

if n > k + 1 and s ̸= 0.

Theorem 16 Let T (Pn) be the total graph of Pn with
order n, then the tenacity of T (Pn) is

T (T (Pn)) =



2n− 1,

if n ≤ 2
2(r−1)+⌈ 2n−2r+1

r
⌉

r ,

if n > 2 and s = 0
2r+⌈ 2n−2r−1

r+1
⌉

r+1 ,

if n > 2 and s ̸= 0.

where 2n− 1 = 3r + s for 0 ≤ s < 3.

Proof. By the definition of subdivision graph, we
know that S(Pn) = P2n−1. From Lemma 11, we have

T (Pn) ∼= P 2
2n−1.

So by Lemma 15, we have

T (T (Pn)) = T (P 2
2n−1) =



2n− 1,

if n ≤ 2
2(r−1)+⌈ 2n−2r+1

r
⌉

r ,

if n > 2 and s = 0
2r+⌈ 2n−2r−1

r+1
⌉

r+1 ,

if n > 2 and s ̸= 0.

where 2n− 1 = 3r + s for 0 ≤ s < 3.

The proof is now complete. ⊓⊔
In [18], Dündar and Aytaç determined the in-

tegrity of total graphs via some parameters, but they
did not give exact values for integrity of total graphs
of path and cycles. We will do it in the next.

Lemma 17 ([2]) Let Ck
n be a powers of a cycle Cn,

for 1 ≤ k ≤ n
2 , we have

I(Ck
n) = k⌈

√
n

k
+

1

4
− 3

2
⌉+ ⌈ n

⌈
√

n
k + 1

4⌉ −
1
2

⌉.

Theorem 18 Let T (Cn) be the total graph of Cn with
order n, then the integrity of T (Cn) is

I(T (Cn)) = 2⌈
√

n+
1

4
− 3

2
⌉+ ⌈ 2n

⌈
√

n+ 1
4⌉ −

1
2

⌉.

Proof. By the definition of subdivision graph, we
know that S(Cn) = C2n. From Lemma 11, we have

T (Cn) ∼= C2
2n.

And so by Lemma 17, we have

I(T (Cn)) = I(C2
2n)

= 2⌈
√

n+
1

4
− 3

2
⌉+ ⌈ 2n

⌈
√

n+ 1
4⌉ −

1
2

⌉.

The proof is now complete. ⊓⊔

Theorem 19 Let T (Pn) be the total graph of Pn with
order n, then the integrity of T (Pn) is

I(T (Pn)) =



2n− 1,

if n ≤ 2

min{2(ω − 1) + ⌈2n−1−2(ω−1)
ω ⌉,

2(ω − 1) + ⌈2n−1−2(ω−1)
ω ⌉},

if n > 2.

where ω = ⌊
√

2n+1
2 ⌋, ω = ⌈

√
2n+1

2 ⌉

Proof. By the definition of subdivision graph, we
know that S(Pn) = P2n−1. From Lemma 11, we have

T (Pn) ∼= P 2
2n−1.

And so by Theorem 8, we have

I(T (Pn)) = I(P 2
2n−1)
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=



2n− 1,

if n ≤ 2

min{2(ω − 1) + ⌈2n−1−2(ω−1)
ω ⌉,

2(ω − 1) + ⌈2n−1−2(ω−1)
ω ⌉},

if n > 2.

where ω = ⌊
√

2n+1
2 ⌋, ω = ⌈

√
2n+1

2 ⌉. This complete
the proof. ⊓⊔

Lemma 20 ([3]) Let Ck
n be the k-th power graph of

Cn with order n, then the toughness of Ck
n is

τ(Ck
n) = k.

Theorem 21 Let T (Cn) be the total graph of Cn with
order n, then the toughness of T (Cn) is

τ(T (Cn)) = 2.

Proof. By the definition of subdivision graph, we
know that S(Cn) = C2n. From the Lemma 11, we
have

T ((Cn) ∼= (S(Cn))
2.

And so by Lemma 20, we have

τ(T (Cn)) = τ(C2
2n) = 2.

The proof is now complete. ⊓⊔

Theorem 22 Let T (Pn) be the total graph of Pn with
order n, then the toughness of T (Pn) is

τ(T (Pn)) =

{
∞, if n = 2

1, if n > 2.

Proof. By the definition of subdivision graph, we
know that S(Pn) = P2n−1. From the Lemma 11, we
have

T (Pn) ∼= (S(Pn))
2.

Thus, by Theorem 5, we have

τ(T (Pn)) = τ(P 2
2n−1) =

{
∞, if n = 2

1, if n > 2.

The proof is now complete. ⊓⊔

4 Relationships Between Some Vul-
nerability Parameters

In this section, the relationships between some
vulnerability parameters such as integrity, toughness,
tenacity, scattering number and rupture degree are es-
tablished.

Theorem 23 If G is an incomplete connected graph,
r(G), τ(G) and κ(G) are the rupture degree, tough-
ness and connectivity of G, respectively, then we have

τ(G) ≥ 2κ(G)

r(G) + n+ 1
.

Proof. Suppose that S is a cut-set of G. Then, by the
definition of rupture degree of G, we have

r(G) ≥ ω(G− S)− |S| −m(G− S).

It is obvious that

|S|+m(G− S) ≤ n+ 1− ω(G− S),

thus, by the above two inequalities we have

ω(G− S) ≤ r(G) + n+ 1

2
.

And it is obvious that

|S| ≥ κ(G).

So we have

|S|
ω(G− S)

≥ 2

r(G) + n+ 1
κ(G).

Then, by the definition of toughness and the
choice of S, we have

τ(G) = min{ |S|
ω(G− S)

} ≥ 2

r(G) + n+ 1
κ(G).

The proof is thus completed. ⊓⊔

Remark 24 The result in Theorem 23 is best possible,
this can be shown by the graph G = K1,n−1.

Theorem 25 If G is an incomplete connected graph
of order n, s(G), T (G) and I(G) are the scattering
number, tenacity and integrity of G, respectively, then
we have

I(G) ≤ s(G) + n

2
T (G).
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Proof. Let S be a cut-set of G. Then, by the definition
of scattering number, we have

ω(G− S)− |S| ≤ s(G).

With the fact that

ω(G− S) + |S| ≤ n,

we have

ω(G− S) ≤ n+ s(G)

2
.

Thus,

|S|+m(G− S)

ω(G− S)
≥ 2

n+ s(G)
(|S|+m(G− S)).

It is easily seen that

|S|+m(G− S) ≥ I(G).

Then, by the definition of tenacity and the choice
of S, we have

T (G) = max{|S|+m(G− S)

ω(G− S)
} ≥ 2

n+ s(G)
I(G).

Hence

I(G) ≤ s(G) + n

2
T (G).

The proof is thus completed. ⊓⊔

Remark 26 The result in Theorem 25 is best possible,
this can be shown by the graph G = K1,n−1.

Theorem 27 If G is an incomplete connected graph,
T (G), τ(G) and I(G) are the tenacity, toughness and
integrity of G, respectively, then we have

T (G) ≥ τ(G) + 1

n
I(G).

Proof. Suppose that S is a T -set of G. Then, by the
definition of toughness, we have

τ(G)ω(G− S) ≤ |S|.

With this fact and ω(G− S) + |S| ≤ n. We get that

2 ≤ ω(G− S) ≤ n

τ(G) + 1
,

It is easily seen that

|S|+m(G− S) ≥ I(G).

So we have

T (G) =
|S|+m(G− S)

ω(G− S)

≥ τ(G) + 1

n
(|S|+m(G− S))

≥ τ(G) + 1

n
I(G).

The proof is thus completed. ⊓⊔

Remark 28 The result in Theorem 27 is best possible,
this can be shown by the graph G = K1,n−1.

Theorem 29 If G is an incomplete connected graph
of order n, r(G), T (G) and I(G) are the rupture de-
gree, tenacity and integrity of G, respectively, then we
have

r(G) ≤ n+ 1

T (G) + 1
− I(G).

Proof. Let S be a cut-set of G. Then, by the definition
of rupture degree, we have

r(G) ≥ ω(G− S)− |S| −m(G− S).

It is easy to see that

I(G) ≤ |S|+m(G− S) ≤ n+ 1− ω(G− S).

Then, by the definition of tenacity, we have

T (G) ≤ |S|+m(G− S)

ω(G− S)
≤ n+ 1− ω(G− S)

ω(G− S)
.

So, we have

ω(G− S) ≤ n+ 1

T (G) + 1
.

On the other hand, we have that

ω(G− S)− |S| −m(G− S) ≤ n+ 1

T (G) + 1
− I(G).

By the definition of rupture and the choice of S, we
know that

r(G) = max{ω(G− S)− |S| −m(G− S)}

≤ n+ 1

T (G) + 1
− I(G).

The proof is thus completed. ⊓⊔

Remark 30 The result in Theorem 29 is best possible,
this can be shown by the graph G = K1,n−1.

Theorem 31 If G is an incomplete connected graph
of order n, r(G), s(G) and I(G) are the rupture de-
gree, scattering number and integrity of G, respec-
tively, then we have

r(G) ≤ (n+ 1− I(G))− 2(2n− I(G))

n+ s(G)
.
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Proof. Let S be a cut-set of G. Then, by the definition
of scattering number, we have

ω(G− S)− |S| ≤ s(G).

With the fact that

ω(G− S) + |S| ≤ n,

we have

ω(G− S) ≤ n+ s(G)

2
.

It is easily seen that

m(G− S) ≥ n− |S|
ω(G− S)

.

From

|S|+m(G− S) ≤ n+ 1− ω(G− S),

and
|S| ≥ 1,

we have

|S| ≥ ω(G− S)− n+ I(G),

So, we have that

|S|+m(G− S) ≥ |S|+ n− |S|
ω(G− S)

=
n+ |S|(ω(G− S)− 1)

ω(G− S)

≥ n+ (ω(G− S)− n+ I(G))(ω(G− S)− 1)

ω(G− S)

= ω(G− S) +
2n− I(G)

ω(G− S)
− (n+ 1− I(G)).

Therefore, by the fact that

ω(G− S) ≤ n+ s(G)

2
.

We have the following inequality

ω(G− S)− |S| −m(G− S)

≤ (n+ 1− I(G))− 2n− I(G)

ω(G− S)

≤ (n+ 1− I(G))− (2n− I(G))
2

n+ s(G)

By the definition of rupture and the choice of S,
we know that

r(G) = max{ω(G− S)− |S| −m(G− S)}

≤ (n+ 1− I(G))− (2n− I(G))
2

n+ s(G)
.

The proof is thus completed. ⊓⊔

Remark 32 The result in Theorem 31 is best possible,
this can be shown by the graph G = K1,n−1.

5 Conclusion
If a system such as a communication network is mod-
elled by a graph G, there are many graph theoretical
parameters used to describe the vulnerability of com-
munication networks including connectivity, integrity,
toughness, binding number, tenacity and rupture de-
gree. Two ways of measuring the vulnerability of a
network is through the ease with which one can dis-
rupt the network, and the cost of a disruption. Con-
nectivity has the least cost as far as disrupting the
network, but it does not take into account what re-
mains after disruption. One can say that the disrup-
tion is less harmful if the disconnected network con-
tains more components and much less harmful if the
affected components are small. One can associate the
cost with the number of the vertices destroyed to get
small components and the reward with the number of
the components remaining after destruction. In this
paper, we have obtained the exact values for some
graph theoretical parameters of powers of paths and
of total graphs of some special graphs.
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